Hydrological extremes in riverine epikarst: response of the invertebrate fauna

Rachel Stubbington
Department of Geography
Loughborough University
Presentation overview

- Study site: headwaters of the River Lathkill
 - Hydrogeological character
 - Instream habitats
- Hydrological extremes during summer 2007
- Sampling techniques
- Results & Discussion
 - Invertebrate survival during hydrological extremes
The River Lathkill: a karst river

- Lathkill headwaters: ~800m
- Geology of the catchment
 - Carboniferous limestone
 - Karst landscape
- Hydrology of karst rivers
 - Very responsive to inputs
 - Hydrological extremes
 - Streambed drying
 - Spates
Gradient of Intermittency

- Upper reaches, Cales Dale = EMERALD
- Downstream = INTERMITTENT
- Downstream spring inputs = NEAR-PERMANENT
- Downstream further springs & Cales Dale = PERENNIAL
The Epikarst

- Surface layer of the underlying karst
- Includes soil, sediment & limestone
- Exposed in the river channel
- New term in ecology

The Epikarst in the Lathkill headwaters:
Hydrological Extremes: Summer ´07

- April: seasonal drying of ephemeral & intermittent reaches
- Wet May – July > flow resumes
- Two spates
- Gradual decline in discharge
- Ephemeral & intermittent reaches dry 9th August

= samples taken
Sampling techniques

Response to spate & declining flow (Surface flow present):
- Surber sampling
- Kick sampling

![Graph showing discharge over time with arrows indicating samples taken.](image)

Discharge (L s\(^{-1}\))

- MAY
- JUN
- JUL
- AUG
- SEP
- OCT

↑ = samples taken
Sampling techniques

Response to streambed drying (Surface water lost):
- Excavation of dry sediments
 - Half preserved
 - Half rehydrated (28d)

Discharge (L s\(^{-1}\))

MAY JUNE JULY AUG SEPT OCT
\[\uparrow = \text{samples taken}\]
Results: Gradient of Intermittency

- DCA
- ANOVAs:
 - Flow permanence
 + association with:
 - Species richness
 - Total abundance
 - Flow permanence
 - association with:
 - Simpson’s diversity
Response to the spate & declining flow: Invertebrate abundance

EPHEMERAL & INTERMITTENT

PERENNIAL & NEAR-PERMANENT
Response to the spate & declining flow: species richness

EPHEMERAL & INTERMITTENT

PERENNIAL & NEAR-PERMANENT
Survival of invertebrates following streambed drying: effects of hydrogeology on refugia

- Refugia promote survival during streambed drying
- Drying refugia retain free water or moisture
- Previous work: hyporheic zone can be a refugium
- But not all systems have a hyporheic zone
- Can the epikarst also act as a refugium?
Recolonisation following flow resumption

Rapid recolonisation of surface channel

Taxa present after 5 days:

Epikarst ✓ Epikarst ✓ Epikarst X Epikarst X

and after 11 days:

Epikarst ✓ Epikarst ✓ Epikarst ✓
The Epikarst as a Refugium

Invertebrate abundance & diversity in ~38kg dry sediment:

- >3000 individuals
 - Oligochaeta & Nematoda dominated (>64% of all individuals)
 - Sphaeriidae & Cyclopoida also abundant
- 38 taxa from 23 families
 - Chironomidae the most diverse: 13 taxa
- Some survived for at least one month:
Survival in the Epikarst Refugium

- Taxa in preserved sediments must have survived as the observed life stage
 - Various beetle larvae & fly larvae
- Other taxa restricted to rehydrated samples:
 - Rehydration may have broken dormancy for these taxa
 - Particularly likely for the Chironomidae: larvae, pupae, exuviae & adults present
Summary

- Hydrogeology influences the invertebrate community in karst rivers
- In particular, hydrological extremes shape the invertebrate community
- Hydrogeological character influences the refugia present
- Epikarst can act as a refugium during streambed drying
- Hydrogeology should be central to ecological studies in karst rivers
Research conducted with:

- Paul Wood (Loughborough University)
- Adam Greenwood (Loughborough University)

Acknowledgements

- Patrick Armitage (Centre for Ecology and Hydrology),
 for identification of chironomids
- John Gunn (University of Huddersfield),
 for provision of hydrological data
- Anne Robertson (Roehampton University),
 for identification of copepods

Thank you for listening

R.Stubbington@lboro.ac.uk