An experimental use of hydrogen peroxide in water well rehabilitation

10th September 2008

Professor Rick Brassington
Newcastle University

Introduction

- The use of hydrogen peroxide
Introduction

- The use of hydrogen peroxide
- Outline of site procedures
- Example of treatment to restore yield
Introduction

- The use of hydrogen peroxide
- Outline of site procedures
- Example of treatment to restore yield
- Example of treatment to destroy PAH

Collaborators

Solvay Interox Ltd, Warrington
An experimental use of hydrogen peroxide in water well rehabilitation

Collaborators

Solvay Interox Ltd, Warrington

J.P. Whitter (Water Well Engineers) Ltd

Yield restoration

Example of yield restoration

Solvay Interox, Warrington
Site Location

Borehole details
History of treatment

- September 2000 – borehole relined & cleaned
- November 2003 – headworks modified
History of treatment

- September 2000 – borehole relined & cleaned
- November 2003 – headworks modified
- May 2006 – pump failed
- December 2006 – cctv survey
History of treatment

- September 2000 – borehole relined & cleaned
- November 2003 – headworks modified
- May 2006 – pump failed
- December 2006 – cctv survey
- June 2007 – borehole treated
- July 2007 – cctv survey repeated
History of treatment

- September 2000 – borehole relined & cleaned
- November 2003 – headworks modified
- May 2006 – pump failed
- December 2006 – cctv survey
- June 2007 – borehole treated
- July 2007 – cctv survey repeated
- July 2007 – borehole restored to service
- November 2007 – step test undertaken
Treatment details

- 5 m3 of 35% hydrogen peroxide injected
- Injection at 10 levels from 70m depth upwards
Treatment details

- 5 m³ of 35% hydrogen peroxide injected
- Injection at 10 levels from 70m depth upwards
- Borehole rested for 24 hours before CCTV survey
- Submersible pump reinstalled
Treatment details

- 5 m3 of 35% hydrogen peroxide injected
- Injection at 10 levels from 70m depth upwards
- Borehole rested for 24 hours before CCTV survey
- Submersible pump reinstalled
- Borehole pumped to waste
- Presence of peroxide using standard indicator paper
Treatment details

- 5 m3 of 35% hydrogen peroxide injected
- Injection at 10 levels from 70m depth upwards
- Borehole rested for 24 hours before CCTV survey
- Submersible pump reinstalled
- Borehole pumped to waste
- Presence of peroxide using standard indicator paper
- Borehole returned to service
An experimental use of hydrogen peroxide in water well rehabilitation

Well performance

[Graph showing specific capacity curve for Water Well No 1]

- Nov 2007
- Nov 2015
- April 2006
Well performance

Water Well No 1 - Specific Capacity Curve

- 2005 & 2006 results 20% more drawdown

An experimental use of hydrogen peroxide in water well rehabilitation
An experimental use of hydrogen peroxide in water well rehabilitation.

Well performance

Water Well No 1 - Specific Capacity Curve

- 2005 & 2006 results: 20% more drawdown
- 2007 values match 2004
- February 2004
- April 2006
- November 2005
- November 2007

Pumping rate (m³/day)

Drawdown (m)
CCTV

Removal of bacterial growths for well face

CCTV

Water clear after treatment
Site procedure

An experimental use of hydrogen peroxide in water well rehabilitation
An experimental use of hydrogen peroxide in water well rehabilitation

Site procedure
Site procedure

Site practice
Peroxide decomposition

- Spontaneous decomposition
- Decomposition rate depends on temperature
Peroxide decomposition

- Spontaneous decomposition
- Decomposition rate depends on temperature
- Decomposition rate depends concentration
- Decomposition rate depends presence of catalysts
An experimental use of hydrogen peroxide in water well rehabilitation

Peroxide decomposition

- Spontaneous decomposition
- Decomposition rate depends on temperature
- Decomposition rate depends concentration
- Decomposition rate depends presence of catalysts
- \(2\text{H}_2\text{O}_2 \rightarrow 2\text{H}_2\text{O} + \text{O}_2 \)
- Large quantities of oxygen produced
Peroxide decomposition

- Spontaneous decomposition
- Decomposition rate depends on temperature
- Decomposition rate depends concentration
- Decomposition rate depends presence of catalysts
- $2\text{H}_2\text{O}_2 \rightarrow 2\text{H}_2\text{O} + \text{O}_2$
- Large quantities of oxygen produced
- Only other breakdown product is water

Exothermic reaction produces heat
Fenton’s Reagent

- Ferrous iron acts as catalyst
- Reaction is very vigorous
Fenton’s Reagent

- Ferrous iron acts as catalyst
- Reaction is very vigorous
- Produces free hydroxyl radicals
- Increases oxidation and biocide properties
Fenton’s Reagent

- Ferrous iron acts as catalyst
- Reaction is very vigorous
- Produces free hydroxyl radicals
- Increases oxidation and biocide properties
- $\text{Fe}^{2+} + \text{H}_2\text{O}_2 \rightarrow \text{Fe}^{3+} + \text{OH} + \text{OH}^-$

- $\text{Fe}^{3+} + \text{H}_2\text{O}_2 \rightarrow \text{Fe}^{2+} + \text{OOH} + \text{H}^+$
PAH contamination

Example of contaminant removal

- Location confidential
PAH contamination

- Location confidential
- Borehole 92.3m deep & 300mm diameter

PAH contamination

- Location confidential
- Borehole 92.3m deep & 300mm diameter
- PAH contamination from carbon black
PAH contamination

- Location confidential
- Borehole 92.3m deep & 300mm diameter
- PAH contamination from carbon black
- Treated with hydrogen peroxide on two occasions
- First treatment 1,500 litres used
An experimental use of hydrogen peroxide in water well rehabilitation

PAH contamination

- Location confidential
- Borehole 92.3m deep & 300mm diameter
- PAH contamination from carbon black
- Treated with hydrogen peroxide on two occasions
- First treatment 1,500 litres used
- Second treatment 720 litres used + ferrous sulphate

Original PAH contamination

<table>
<thead>
<tr>
<th>Depth</th>
<th>15m</th>
<th>22m</th>
<th>58m</th>
<th>63m</th>
<th>68m</th>
<th>75m</th>
<th>81m</th>
<th>82m</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sample type</td>
<td>P</td>
<td>P</td>
<td>D</td>
<td>P</td>
<td>D</td>
<td>D</td>
<td>D</td>
<td>P</td>
</tr>
<tr>
<td>Fluoranthene</td>
<td>ng/l</td>
<td><0.3</td>
<td>1,020</td>
<td>3,370</td>
<td>2,650</td>
<td>4,730</td>
<td>5,090</td>
<td>2,220</td>
</tr>
<tr>
<td>Benzo 1,12, perylene</td>
<td>ng/l</td>
<td>1.6</td>
<td>106</td>
<td>356</td>
<td>294</td>
<td>520</td>
<td>526</td>
<td>253</td>
</tr>
<tr>
<td>Benzo 11,12, fluoranthene</td>
<td>ng/l</td>
<td>0.7</td>
<td>94.8</td>
<td>360</td>
<td>283</td>
<td>492</td>
<td>527</td>
<td>230</td>
</tr>
<tr>
<td>Inendo (1, 2, 3-cd) pyrene</td>
<td>ng/l</td>
<td><0.1</td>
<td>97.1</td>
<td>281</td>
<td>253</td>
<td>401</td>
<td>391</td>
<td>218</td>
</tr>
<tr>
<td>Benzo-3, 4-fluoranthene</td>
<td>ng/l</td>
<td>1.5</td>
<td>286</td>
<td>1,050</td>
<td>817</td>
<td>1,430</td>
<td>1,520</td>
<td>670</td>
</tr>
<tr>
<td>Benzo-3, 4-pylene</td>
<td>ng/l</td>
<td>1.0</td>
<td>207</td>
<td>773</td>
<td>618</td>
<td>1,060</td>
<td>1,130</td>
<td>502</td>
</tr>
</tbody>
</table>
An experimental use of hydrogen peroxide in water well rehabilitation

After first treatment

<table>
<thead>
<tr>
<th>Sample depth</th>
<th>25m</th>
<th>60m</th>
<th>72m</th>
<th>76m</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fluoranthene</td>
<td>ng/l</td>
<td>12.4</td>
<td><2.4</td>
<td>3.4</td>
</tr>
<tr>
<td>Benzo 1,12, perylene</td>
<td>ng/l</td>
<td><1.3</td>
<td><1.3</td>
<td><1.3</td>
</tr>
<tr>
<td>Benzo 11, 12, fluoranthene</td>
<td>ng/l</td>
<td><0.6</td>
<td><0.6</td>
<td><0.6</td>
</tr>
<tr>
<td>Inendo (1, 2, 3-cd) pyrene</td>
<td>ng/l</td>
<td>1.9</td>
<td>1.9</td>
<td>2.2</td>
</tr>
<tr>
<td>Benzo-3, 4-fluorathene</td>
<td>ng/l</td>
<td>1.3</td>
<td>1.1</td>
<td>0.9</td>
</tr>
<tr>
<td>Benzo-3, 4-pyrene</td>
<td>ng/l</td>
<td>0.5</td>
<td><0.4</td>
<td>0.5</td>
</tr>
</tbody>
</table>

After second treatment

<table>
<thead>
<tr>
<th>Date</th>
<th>26/1/2008</th>
<th>27/1/2008</th>
<th>28/1/2008</th>
<th>25/3/2008</th>
</tr>
</thead>
<tbody>
<tr>
<td>Duration of pumping</td>
<td>90 mins</td>
<td>24 hours</td>
<td>36 hours</td>
<td>53 days</td>
</tr>
<tr>
<td>Fluoranthene</td>
<td>ng/l</td>
<td>34.7</td>
<td><2.4</td>
<td>5.9</td>
</tr>
<tr>
<td>Benzo 1,12, perylene</td>
<td>ng/l</td>
<td>10.7</td>
<td><1.3</td>
<td><1.3</td>
</tr>
<tr>
<td>Benzo 11, 12, fluoranthene</td>
<td>ng/l</td>
<td>4.6</td>
<td><0.6</td>
<td><0.6</td>
</tr>
<tr>
<td>Inendo (1, 2, 3-cd) pyrene</td>
<td>ng/l</td>
<td>7.9</td>
<td><0.7</td>
<td><0.7</td>
</tr>
<tr>
<td>Benzo-3, 4-fluorathene</td>
<td>ng/l</td>
<td>6.4</td>
<td><0.7</td>
<td><0.7</td>
</tr>
<tr>
<td>Benzo-3, 4-pyrene</td>
<td>ng/l</td>
<td>8.0</td>
<td><0.4</td>
<td><0.4</td>
</tr>
</tbody>
</table>
An experimental use of hydrogen peroxide in water well rehabilitation

After second treatment

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Fluoranthene ng/l</td>
<td><2.4</td>
<td><2.4</td>
<td><2.4</td>
<td><2.4</td>
<td><2.4</td>
</tr>
<tr>
<td>Benzo 1,12, perylene ng/l</td>
<td><1.3</td>
<td><1.3</td>
<td><1.3</td>
<td><1.3</td>
<td><1.3</td>
</tr>
<tr>
<td>Benzo 11, 12, fluoranthene ng/l</td>
<td><0.6</td>
<td><0.6</td>
<td><0.6</td>
<td><0.6</td>
<td><0.6</td>
</tr>
<tr>
<td>Inendo (1, 2, 3-cd) pyrene ng/l</td>
<td><0.7</td>
<td><0.7</td>
<td><0.7</td>
<td><0.7</td>
<td><0.7</td>
</tr>
<tr>
<td>Benzo-3, 4-fluorathene ng/l</td>
<td><0.7</td>
<td><0.7</td>
<td><0.7</td>
<td><0.7</td>
<td><0.7</td>
</tr>
<tr>
<td>Benzo-3, 4-pyrene ng/l</td>
<td><0.4</td>
<td><0.4</td>
<td><0.4</td>
<td><0.4</td>
<td><0.4</td>
</tr>
</tbody>
</table>

Summary

- Appears to restore borehole yield
Summary

- Appears to restore borehole yield
- Oxide deposits removed from borehole face
- Likely to be scrubbing affect of oxygen bubbles
An experimental use of hydrogen peroxide in water well rehabilitation

Summary

- Appears to restore borehole yield
- Oxide deposits removed from borehole face
- Likely to be scrubbing affect of oxygen bubbles
- Fenton’s Reagent produces free hydroxyl radicals

- Acts as strong biocide
Summary

- Appears to restore borehole yield
- Oxide deposits removed from borehole face
- Likely to be scrubbing affect of oxygen bubbles
- Fenton’s Reagent produces free hydroxyl radicals
- Acts as strong biocide
- Residual materials are oxygen and water

Further trials are currently underway.
The end