Fail-Safe Engineering: towards sustainable landfill

David H Hall, David Drury & John McDougall

Project Outline

- A study to examine the role of engineering in assisting to render landfilling of residual wastes a sustainable waste management option.
- To extend the Equilibrium Study to examine different contaminants and different landfill geometries (and to understand the role of site geometry).
- To understand the hydraulics of a landfill upon abandonment given the need for chemical & hydraulic equilibrium.
- Project funded by Defra as part of its Waste and Resources Research Programme. The research contract No. is WR0304/WRT279.
Flushing Landfills

- Flushing removes contaminant mass from landfill and is therefore an important part of the stabilisation process.
- The greater the amount of flushing the greater the removal of contaminants. (increasing the liquid/solid ratio)
- BUT…. What happens when the pumps get switched off?

The waste is equally flushed during operations

Operational Phase
This would be the flow field if we were looking at isotropic and homogeneous conditions

Flooding and overtopping

Or this, if the system is not homogeneous & isotropic
Flow Zones

- **Zone 1** = thin unsaturated zone dominated by vertical flow and high flushing rate (based on evolution of L/S ratio). Waste less compressed than that at depth and hence relatively permeable.

- **Zone 2** = Horizontal flow based on saturated conditions below, in a high K zone in shallow waste.

- **Zone 3** = deep area of waste disposal with high degree of compression leading to low K – nearly stagnant with very low flushing rates – driven by leakage only.

- Anisotropy taken as $K_h = K_v \times 10$
What does this mean?

- It means that the evolution of leachate quality with time can be markedly different in different parts of the landfill.
- Surface areas will flush more readily and quickly than deep areas within the landfill.
- Lower concentrations discharged to surface water while higher concentrations leak to groundwater.
Evolution of different leachate qualities

Geometry Matters

- We examined three different landfill geometries (all with the same volume) – shallow, medium and deep.
- We examined two land-raise geometries - medium and deep
- We looked at raw (untreated) MSW, MBT residues and IBA.
- We modelled three fail-safe scenarios…..
Fail-Safe Scenarios

- Manage landfill so that there is limited leakage — all excess leachate overtops and is diluted in a moat where dilution from cap run-off reduces the concentration of the contaminants.

- Ditto, but with the addition of an unmanaged wetland providing some (limited) treatment capacity.

- Use of a low-grade sidewall liner.

Assessment Method

- Run the performance assessment with the management time as a stochastic variable (25 iterations).

- Compare ultimate (maximum) groundwater contamination conc. with the management time. (see example on the next slide).

- Compare with water quality standards.

- Use the amount of time required to manage the site to avoid a breach as a measure of the sustainability of the system.
Waste Types and their limiting contaminants

- MSW (untreated) constant problem with mecoprop to groundwater and ammoniacal N to groundwater and surface water.
- MBT problem with ammoniacal N to groundwater and surface water.
- IBA problem with copper to surface water.
Findings

- Shallow landfills and all Land-Raise sites achieve equilibrium status sooner – but more risk to surface water (less to groundwater as heads acting on the base cannot build up very high values).
 - Low groundwater leakage rates
 - Comparatively high L/S ratios
- Deep sites are protective of surface water (they rarely overflow and when they do the flux of water will be less as the leakage will be much greater) due to high heads acting on the basal liner system.
 - High groundwater leakage rates
 - Comparatively low L/S ratios

Conclusions

- Unlikely to be able to rely solely on engineering methods to meet sustainability targets (to stabilise waste in landfill in decades rather than centuries).
- Additional technologies need to be used to speed up the process of waste stabilisation (higher rates of flushing, or air injection to create aerobic landfill).
- Perhaps financial incentives for operators to undertake additional works to stabilise waste.
- Remember, it is society’s waste, and it’s society’s desire to see sustainable waste management – so society should pay the price!
Acknowledgements

- My co-authors (David Drury and John McDougall)
- Defra Waste and Resources Team
- The Steering committee (Nick Blakey, Peter Braithwaite, Alan Rosevear & William Barker-Wyatt)

The views expressed in this presentation are entirely those of the authors and not necessarily those of the funding organisation.

Thank you for your attention.

dhall@golder.com