
Industry, clustering & transport

Professor Dermot J Roddy
Newcastle University
www.ncl.ac.uk/energy

IEA "blue map" scenario

- CO₂ capture from industrial plants
- Pipelines for transportation
- Clusters & networks
- Case study

Industrial CO₂ capture – some considerations

- Generally similar to retrofitting post-combustion capture technology on a power station
- CO₂ concentration in flue gases is generally low, requiring large absorbers and high rates of solvent regeneration
- But some processes produce a concentrated CO₂ stream eg steam methane reforming to hydrogen, ethylene oxide production, cement production, ammonia production, fermentation
- Effect of other impurities in the flue gases

Industrial CO₂ capture – some considerations (2)

- Availability of space for Carbon Capture equipment
- Availability of additional cooling water
- Access to LP steam for solvent regeneration
- Electrical power demands for CO₂ compression
- Pipeline route & wayleaves

CO₂ pipelines – some metrics

- 3600 miles of CO₂ pipelines built over 40 years in the US
- 320 km pipeline from North Dakota to Weyburn, Canada, carrying 2.8 Mte/year
- In-Salah, Algeria: pipeline carrying 1.2
 Mte/year
- 240 km pipeline under development in Alberta, Canada, with planned capacity of 14.6 Mte/year

Current vs. future pipelines

	Current Pipelines	The Next Generation
Location	Mostly in the USA - onshore Worldwide, both onshore & offshore	
Purpose	Enhanced Oil Recovery	Mainly climate change with possible EOR
Sources	Naturally occurring CO ₂ underground	Mostly fossil fuel derived
Quality	High purity. EOR Requirements.	Impurities dependent on capture technology
Economics	High Return on Investment (ROI)	Longer time for ROI
Design	Conservative: justified by economics	Needs to be optimised with consideration of impurities present
Regulation & Standards	Regulated and designed using liquid specifications (49CFR195 & ASMEB3.4)	Design codes require modification.
Routing	Currently through mostly unpopulated	May need to go through densely populated
	areas	areas
Safety	Conservative design	May require further work for design optimisation and impurities

Effect of Impurities

Impurities in the CO₂ stream from the capture process can:

- Change the phase diagram and the location of the critical point
- Affect the solubility of water in the fluid
- Affect the hydraulic characteristics (density, compressibility) of the fluid
- Affect the corrosion rate in a wet CO₂ environment
- Affect the susceptibility to stress corrosion cracking
- Affect the decompression characteristics following a pipeline failure

Propagating Fractures

Propagating brittle fracture

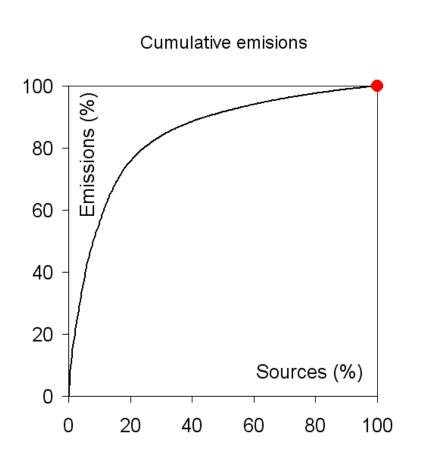
 Risk of long running brittle fracture due to cooling effects around leaks

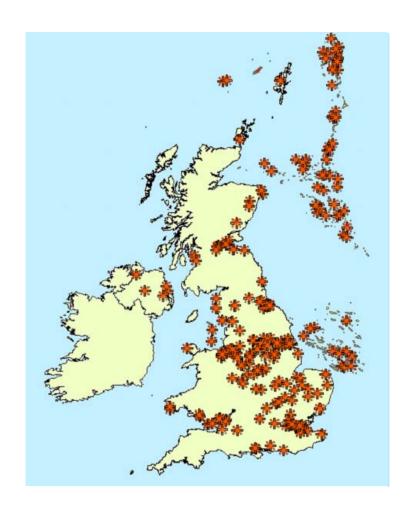
Propagating ductile fracture

- In-service ductile fractures have propagated up to 300m in natural gas pipelines
- Need to understand the nature the decompression process & fracture velocity
- Decompression dependent on gas composition

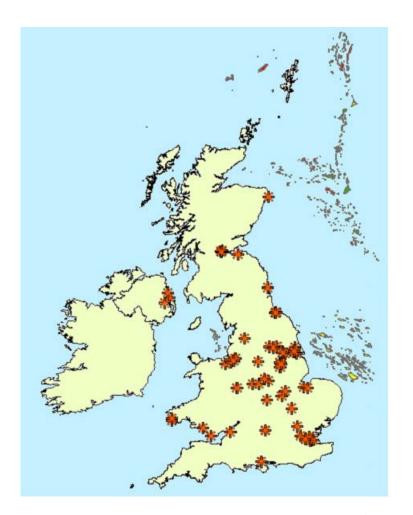
Pipeline design considerations

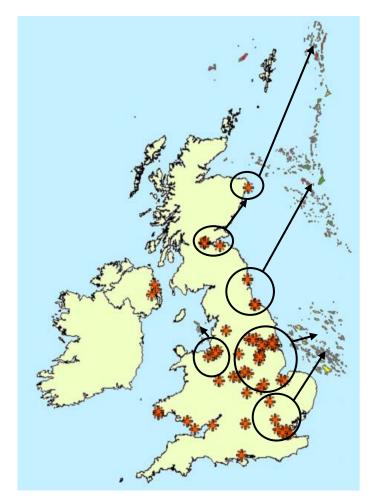
Newcastle


- Likely contaminants?
- Carbon steel pipelines + corrosion inhibitor injection versus corrosion-resistant alloys
- Materials selection for equipment & valves
- Supercritical or dense-phase? (affects pipe diameter, pumps vs. compressors etc)
- Avoiding 2-phase flow
- Hydrate formation (remove water?)
- Likely future safety regulations (main risk to people is asphyxiation)


Special Design Considerations

- Hydraulic modelling
 - Specifying a CO₂ composition for pipeline transport
 - Determining pipeline capacity
 - Modelling pressure and temperature drops along a pipeline
- Fracture control
 - Determining decompression properties of CO₂
 - Determining appropriate toughness requirements
- Mitigation of corrosion
 - Specifying appropriate materials or water contents to avoid corrosion and hydrate formation
- Mitigation of stress corrosion cracking
 - Specifying appropriate impurity levels to avoid stress corrosion cracking
- Safety and risk assessment criteria
 - Dispersion analysis and determining appropriate risk profiles
 - Specification of block valve distances


Networks & clusters



Source: BGS Database http://www.bgs.ac.uk/co2/ukco2.html

Source: BGS Database http://www.bgs.ac.uk/co2/ukco2.html

Possible plans for Yorkshire & Humber

Source: Yorkshire Forward - A carbon capture and storage network for Yorkshire and Humber.

- Annual CO₂ emissions: 90 Mte/year
- 90% is from 12 point sources

www.yorkshire-forward.com/media-centre/documents/10760

Some industrial CCS cluster studies

	Dimensions
Yorkshire/Humber	90 Mte/year of CO ₂
Scotland	20 Mte/year of CO ₂
NE England	27 Mte/year of CO ₂
Portugal	27 point sources
Italy	8 Mte/year; 3 storage sites
California	50 Mte/year of CO ₂ ; 37 point sources; 14 potential storage sites

Network design considerations

Newcastle

- Entry specifications for CO₂ on multi-user systems
- Route selection who to include?
- Need for compulsory purchase orders (power of eminent domain)
- Rights of access to pipeline and a "fair" charging mechanism

Approaches to optimising network growth

 Time-based: often based on MARKAL models, future targets on a timeline, future policy drivers and comparative data for other ways of reducing CO₂ emissions

 Spatially-based: modelling geographic differences in construction cost, locations of point sources and storage sites

Case study: Northeast England

Teesside Chemical Initiative March 2005

Biomass-based plants

Pipeline networks

- Built over last 50 years
- Up to 45 cm diameter

 Carrying: hydrogen, ammonia, LPG, naphtha, petrol, methane, nitrogen, ethylene, propylene, fuel oil, fuel gas, cyclohexane

CO₂ emissions



Installation	CO ₂ emissions (Mte/year)	IEA tier
Steelworks	6.95	0
Proposed IGCC plant (850MW)	5.00	0
Existing gas-fired power station (1.9GW)	3.15	0
New gas-fired power station (1GW)	2.89	0
Proposed 300MW biomass power plant	1.20	0
Petrochemicals site utilities supplier	1.43	0
Petrochemicals operator	1.36	0
All 7 tier 0 emitters	21.98	0
19 tier 1 emitters	3.99	1
13 tier 2 emitters	0.23	2
Sum of tier 0, 1 & 2 emissions	26.2	

CO₂ emitters

Layout drawings and cost estimates produced for carbon capture on 6 plants.

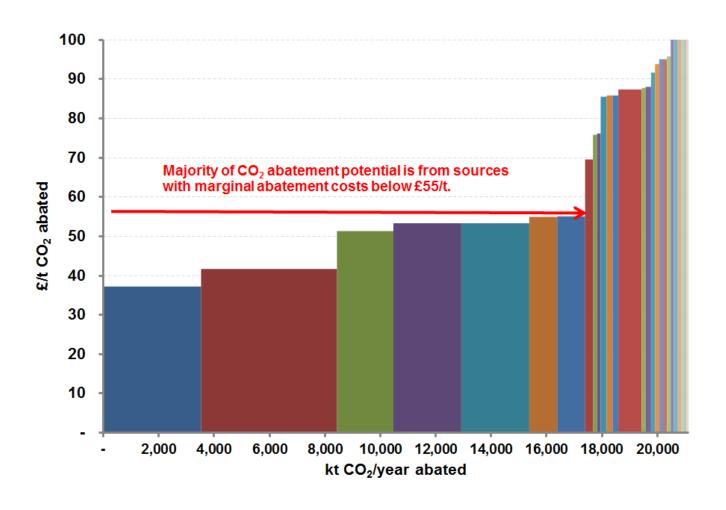
Economics of CO₂ capture

	Anchor only	Small	Medium	Large
No. of point sources	1	5	8	35
Annual CO2 captured (Mte CO2/year)	5	14	22	26
Lifetime CO2 avoided (20 years)	83 Mte	262 Mte	377 Mte	434 Mte
Incremental capital cost of capture and compression	£151 m	£1.1 bn	£2.0 bn	£3.1 bn
Incremental operating and energy costs for capture and compression of CO2	£55 m/yr	£187 m/yr	£298 m/yr	£371 m/yr
Mean average £/te CO2 captured	£15	£21	£24	£30
Mean average £/te CO2 abated	£18	£25	£29	£36

Onshore transport networks

	Anchor-only	Small	Medium	Large
Number of sources	1	5	8	37
Peak capacity (Mt/yr)	5	14	22	26
Onshore pipeline distance	5 km	19 km	22 km	37 km

Cost of pipelines & compression

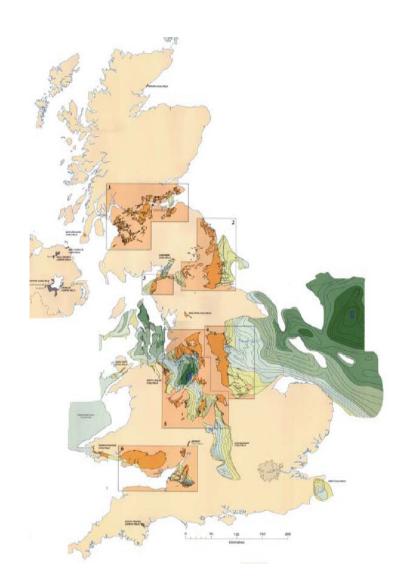

Network description	Anchor- only	Small	Medium	Large
Network physical capacity	5 Mte CO2/yr	14 Mte CO2/yr	22 Mte CO2/yr	26 Mte CO2/yr
Modelled diameter offshore (for 200 km length)	500 mm (20")	600 mm (24")	900 mm (36")	900 mm (36")
Capital cost for offshore pipelines	£333 m	£365 m	£485 m	£485 m
Combined capital cost for network (onshore and offshore pipelines and shoreline compression)	£346 m	£425 m	£546 m	£562 m
Additional capital cost for network compared to anchor/demonstration only	£0	£79 m	£201 m	£216 m
Cost of service (assuming users pay equally for access)	£12/te	£7.3/te	£7.4/te	£7.4/te

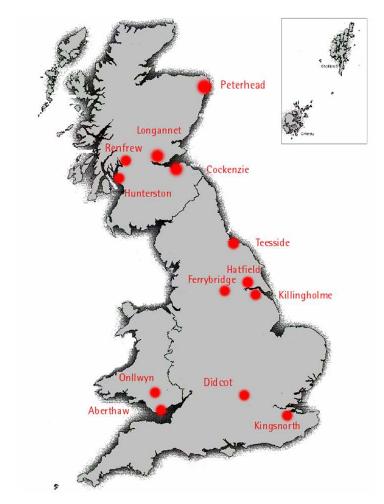
Marginal abatement cost curve

Newcastle

University

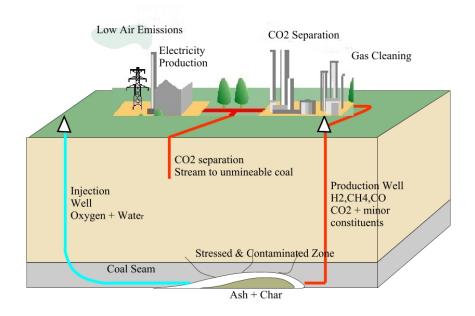
Conclusions from NE England study


- For any estimated future CO₂ emissions cost we can see where CCS is economic
- The first 8 plants fall within the range usually quoted for 2020-2030
- A larger system could be built in anticipation of even higher prices in future – but there is a risk of smaller emitters not connecting
- There is a strong case for a network aimed primarily at the largest 8 emitters.



What about UK coal

resources?



Source; http://www.ccsassociation.org.uk/ccs_projects/uk_projects.html

Expanding the scope

www.ucgassociation.com

www.five-quarter.com

Some international examples (studies)

Location	Features
Germany (NRW)	177 Mte/year from power stations + 50 Mte/year from industry; propose a 1200 km network based on 2 clusters
Italy	Split country in to 5 regions and optimise within each region
Po Valley (northern Italy)	Propose an 8 Mte/year network with 34km (20") + 88 km (12") of pipelines
Portugal	27 Mte/year spread across 27 point sources; propose 3 clusters
US	2 policy scenarios: one requires 11,000 miles of new pipelines and the other 23,000 miles (to include high-purity sources eg refineries)

Pricing considerations

- Who pays for over-sizing of the initial network?
- Fair mechanism for relating charges to throughput?
- Fair mechanism for recovering costs from those who use the system more/less/earlier/ later than planned?
- Differentiate between those who operate in international national markets vs. national?

Acknowledgments

Research funders:

- Natural and Environmental Research Council
- Engineering and Physical Sciences Research Council
- National Grid
- One Northeast
- Tees Valley Industrial Programme

To find out more.....

Roddy, DJ, Development of a CO₂ network for industrial emissions, Applied Energy 91 (2012), 459-465, doi:10.1016/j.apenergy.2011.10.016

- dermot.roddy@ncl.ac.uk
- EPSRC MATTRAN project http://research.ncl.ac.uk/mattran/
- On pipeline technology: <u>julia.race@ncl.ac.uk</u>