

CO₂ EOR and storage in the North Sea: A developer's perspective

G Roberts & J Lorsong

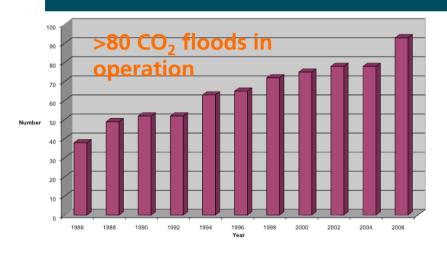
Carbon Capture & Storage, Joint Meeting of The Geological Society & AAPG London, 22-23 November 2011

Deployment Driver	EOR	Depleted Gas Field	Deep Saline Formation
Net storage cost	Lowest Oil revenue, lower monitoring	Intermediate No revenue, lower monitoring	Highest No revenue, higher monitoring

Deployment Driver	EOR	Depleted Gas Field	Deep Saline Formation
Net storage cost	Lowest Oil revenue, lower monitoring	Intermediate No revenue, lower monitoring	Highest No revenue, higher monitoring
Storage availability	Intermediate Dependent on oil fields	Lowest Similar to oil, but less economic incentive; synchronising transition	Highest Most sedimentary basins

Deployment Driver	EOR	Depleted Gas Field	Deep Saline Formation
Net storage cost	Lowest Oil revenue, lower monitoring	Intermediate No revenue, lower monitoring	Highest No revenue, higher monitoring
Storage availability	Intermediate Dependent on oil fields	Lowest Similar to oil, but less economic incentive; synchronising transition	Highest Most sedimentary basins
Risked appraisal cost	Lowest Existing data, lower uncertainty	Lowest Existing data, lower uncertainty	Highest Little data, higher geological risk, long lead time

Deployment Driver	EOR	Depleted Gas Field	Deep Saline Formation
Net storage cost	Lowest Oil revenue, lower monitoring	Intermediate No revenue, lower monitoring	Highest No revenue, higher monitoring
Storage availability	Intermediate Dependent on oil fields	Lowest Similar to oil, but less economic incentive; synchronising transition	Highest Most sedimentary basins
Risked appraisal cost	Lowest Existing data, lower uncertainty	Lowest Existing data, lower uncertainty	Highest Little data, higher geological risk, long lead time
Geological integrity risk	Lowest Proven trap, static & dynamic data	Lowest Proven trap, static & dynamic data	Highest Trap & seal risk, limited data, (plume migration)


Deployment Driver	EOR	Depleted Gas Field	Deep Saline Formation
Net storage cost	Lowest Oil revenue, lower monitoring	Intermediate No revenue, lower monitoring	Highest No revenue, higher monitoring
Storage availability	Intermediate Dependent on oil fields	Lowest Similar to oil, but less economic incentive; synchronising transition	Highest Most sedimentary basins
Risked appraisal cost	Lowest Existing data, lower uncertainty	Lowest Existing data, lower uncertainty	Highest Little data, higher geological risk, long lead time
Geological integrity risk	Lowest Proven trap, static & dynamic data	Lowest Proven trap, static & dynamic data	Highest Trap & seal risk, limited data, (plume migration)
Capital exposure	Highest Extra facilities & wells	Lowest Re-use facilities & wells	Intermediate Minimal facilities and wells, but all new

Deployment Driver	EOR	Depleted Gas Field	Deep Saline Formation
Net storage cost	Lowest Oil revenue, lower monitoring	Intermediate No revenue, lower monitoring	Highest No revenue, higher monitoring
Storage availability	Intermediate Dependent on oil fields	Lowest Similar to oil, but less economic incentive; synchronising transition	Highest Most sedimentary basins
Risked appraisal cost	Lowest Existing data, lower uncertainty	Lowest Existing data, lower uncertainty	Highest Little data, higher geological risk, long lead time
Geological integrity risk	Lowest Proven trap, static & dynamic data	Lowest Proven trap, static & dynamic data	Highest Trap & seal risk, limited data, (plume migration)
Capital exposure	Highest Extra facilities & wells	Lowest Re-use facilities & wells	Intermediate Minimal facilities and wells, but all new
Well integrity risk	Highest More wells, some re-used, corrosive fluids	Intermediate Re-use of wells, large pressure gradients	Lowest Fewer purpose-built wells

CO₂ EOR – established technology with improving performance

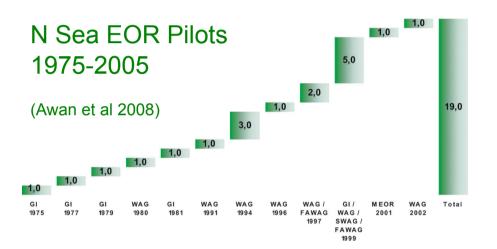
- Business built in North America on low-cost natural CO₂ at low oil prices
- Today ~60 Mtpa CO₂ injected, >300 mstbd
- 4 decades of field experience and technology development

CO₂ EOR trends

- Higher incremental recovery (>15% STOIP or more) as floods mature, techniques improve and oil price rises
- Higher oil/ CO_2 price drives tradeoff of CO_2 utilisation for higher throughput (>1 HCPV) and higher ultimate recovery
- Tapered WAG or no WAG
- Better surveillance enables better control of volumetric sweep
- Higher oil price enables directional/horizontal drilling, better completions to target unswept oil

CO₂ EOR has been considered in the North Sea for more than 30 years

1979 Heriot Watt study for UK Dept of Energy


- Technically attractive, many potential targets
- CO₂ capture from power plants too expensive

Numerous CO₂ EOR studies since:

- Forties, Miller, Gullfaks, etc.
- BP, Shell, Statoil, Apache, ConocoPhillips, etc.

Miscible gas EOR with enriched hydrocarbon gas:

- 18 field tests 1975-2005; 17 successful
- Successful full field development at Magnus

Historical barriers to CO₂ EOR

- Competition for capital with lower-cost barrels (satellites, green field, other basins)
- CO₂ supply for pilots
- Facilities availability, retrofit
- Lack of large scale, long-term CO₂ supplies at competitive cost

CCS projects create new opportunities for EOR

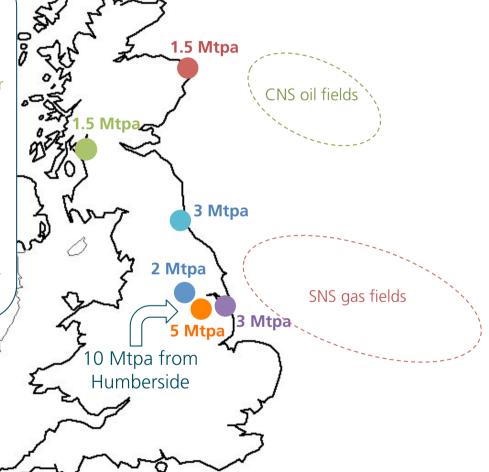
UK Applicants for NER300 Funding

Peterhead, SSE 400 MW, 1.5 Mtpa

Hunterston, Peel Power 300 MW, 1.5 Mtpa

Teesside, Progressive 450 MW, 3 Mtpa

Selby, Drax 300 MW, 2 Mtpa


Immingham, C-Gen 450 MW, 3 Mtpa

Don Valley, 2Co Power 650 MW, 5 Mtpa

NER300 applicants to be selected in 2012; commercial operation by 2016-17

UK CCS demonstration programme is expected to support up to 4 projects

Potential CO₂ supply 5 – 11 Mtpa by 2020

Moving offshore – challenges and opportunities

	Onshore	Offshore
Well Cost	Lower – closer spacing, pattern water floods	Higher – large spacing, peripheral water floods
Facilities Capex and Opex	Lower – lesser reservoirs are economic, longer field life	Higher – only large, high quality reservoirs, shorter life
Logistics	Pilots and phased developments	No pilots, limited ability to phase
CO ₂ supply	Competitive market for limited supplies	Low cost storage alternative -> low commodity cost; higher transportation?

Prospects for North Sea CO₂ EOR:

- High costs for wells and facilities offset against higher reservoir quality (and lower CO₂ costs?)
- Higher development risks due to limited phasing
- Generally lower recovery factors due to shorter field life and larger well spacing

Generic North Sea development for CO₂ EOR and storage

Project size

- Assume ultimate recovery of 1.5 3 stb/t of imported CO_2 and 8 15% of STOIP (cf 3 stb/t and 12% onshore*)
- 80 Mt CO₂ (4 Mtpa for 20 years) yields 120 240 mmstb
- Field size needed: 800 1,500 mmstb STOIP
- 25 60 wells for 25 30 mmstb/well

New facilities capex £500 - £1,000 m

- CO₂ import & injection riser, metering, manifolds, vent, (pumps)
- Produced gas recycling >300 mmscfd compression and power
- New steel jacket and platform (bridgelinked to existing)
- Platform life extension
- Installation, hook-up & commissioning

Generic North Sea development for CO₂ EOR and storage (cont'd)

Well capex £150 - £700 m

- Workovers to equip for CO₂ service
- New drilling for improved well placement and spacing
- Abandonments for CO₂ storage integrity

Illustrative costs & revenues (£ billion)				
Capex	0.7	1.7		
Opex	1.4	1.8		
CO ₂ transport (purchase)	0.8	2.5		
CO ₂ storage fees	0	1.5		
Oil revenue (\$75/bbl)	6	12		
Production Taxes	3	9		

Opex £70 - 90 m/yr


- Operations, maintenance, inspection and corrosion control
- CO₂ storage monitoring, CO₂
 Storage Permit and CO₂ Storage
 Lease

N Sea EOR is potentially economic with conservative assumptions on oil recovery and price

Large fields and a large CO_2 supply (\geq 4 Mtpa) are required to recover costs of field re-development and CO_2 pipeline

Don Valley CCS chain with EOR

~2 Mtpa coal

~920 Mwe gross power generation

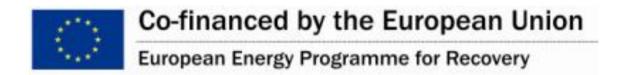
~4.6 Mtpa net CO₂ export

~100 km onshore pipeline

~300 km offshore pipeline

Central N Sea

Oil field redevelopment for CO₂ EOR



CO₂ EOR and storage – a developer's perspective

- EOR is the most cost-effective option for commercial CO₂ storage
- CO₂ EOR is well established onshore; miscible gas EOR successfully deployed in the North Sea
- Lack of a suitable CO₂ supply has been the principal barrier to deployment in the North Sea
- Industrial scale CCS demonstrations will create large CO₂ supplies for EOR in the next 5 years
- Compared to onshore developments, offshore EOR will involve higher costs and capital exposure, set against superior reservoir quality and low commodity cost for CO₂
- Estimated costs for a large offshore development are manageable, assuming modest EOR performance (compared to onshore averages) and conservative oil prices
- The proposed Don Valley CCS chain would demonstrate technical and commercial viability of North Sea CO₂ EOR and storage, anchoring further developments for cost-effective storage and CCS

The Don Valley CCS Project is co-financed by the European Union's European Energy Programme for Recovery. The sole responsibility for this publication lies with the authors. The European Union is not responsible for any use that may be made of the information contained therein.

www.2coenergy.com www.donvalleypower.com