Offshore Salt Cavern Construction Risk Mitigation

Andrew Stacey, Stag Energy

Sustainable Exploitation of the Subsurface

Geological Society, London
“Sustainable Exploitation of the Subsurface”

Salt Cavern Gas Storage can contribute towards resolving the Energy Trilemma:

- Decarbonisation
- Security of supply
- Affordability

To achieve these goals it is important to “encourage innovation” in:

- Storage Services to an SNG market
- Site Selection
- Site Appraisal
The business development manager’s key challenge is to prepare for an SNG economy.

What are the key drivers for an expanding SNG market?

Decarbonisation - SNG improves project economics for carbon neutral large combustion sites:

- Carbon Dioxide Utilisation (CDU) - captured CO2 is used in production of SNG, and provides an additional source of revenue.

Security of Supply - SNG improves security by reducing reliance on gas imports:

- Annual production of SNG using CO2 from the UK’s large combustion plants, equates to the National Grid projected annual gas imports through to 2035.

Affordability - SNG minimises costs to consumers by minimising new infrastructure expenditure:

- SNG can utilise existing infrastructure, i.e. natural gas storage, and pipelines.
“Affordability” of Subsurface Storage

The geoscientist’s key challenge is to help mitigate the risk of cavern construction budget overrun (expenditure & schedule)

1. **Site Selection:** what are the benefits from regional salt basin geological studies?
 - Structural history
 - Formation thicknesses
 - Lithofacies variation

2. **Site Appraisal:** what are the benefits from high resolution data?
 - Ultra high resolution seismic data
 - High resolution wire line logs
Site Selection - Salt Cavern Project

Basin vertical tectonic history:
- **Formation thickness** – greater salt formation thickness reduces number of caverns for a required working gas capacity

Basin horizontal tectonic history:
- **Fault complexity** – absence of faulting reduces risk of lower gas storage capacity due to irregular shaped caverns

Basin clastic deposition history:
- **Lithofacies** – absence of fluvial deposits reduces risk of smaller cavern spatial volume due to:
 - Smaller sump (lower insoluble content)
 - Regular shaped caverns (thinner mudstone formations)
Site Selection – Thick Salt

Top Halite

Gateway Cavern

Top Halite
Flooded shelves suppress transport of siliciclastics into the basin (Hovorka, 2007).

Increased water depth in basin centre encourages increased halite precipitation.

Gateway site located near basin depocentre.

Cheshire Basin located near basin margin.
“Innovative Ideas” to Minimise Risk of Inaccurate Cavern Spatial Volume Estimates

1. **Ultra High Resolution Seismic Data** to improve Solution Mining Efficiency estimates:
 - Improves accuracy of “structural deformation mapping”
 - Improves accuracy of “clastic formation mapping”

2. **High Resolution Wireline Logs** to improve Sump Volume and Solution Mining Efficiency estimates:
 - Improves accuracy of “percentage insoluble content” estimates
 - Improves accuracy of “insoluble distribution” estimates
Site Appraisal – Offshore Seismic Survey

UHR Seismic Survey data acquisition:

• Relatively “low cost” site survey vessel

• 2x40 cubic inch, and 2x20 cubic inch airguns

• 300m streamer

UHR Seismic Survey data for target depths of up to 1km:

• Vertical resolution 5-7m (Pre-existing data 30-40m)

• Centre frequency 130-150 Hz (Pre-existing data 30Hz)
Site Appraisal – Offshore Seismic Survey

<table>
<thead>
<tr>
<th>SKETCH MAP / DIAGRAM, CavernDig2.lcsv, Tie_Well.tosv</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.5 Km</td>
</tr>
<tr>
<td>High density 100m line spacing</td>
</tr>
<tr>
<td>Gateway 1-e</td>
</tr>
<tr>
<td>BG 110/3-2</td>
</tr>
<tr>
<td>3 Km</td>
</tr>
</tbody>
</table>
Site Appraisal – Thick Salt & Lithofacies

Example UHR seismic line:
Cavern interval depth accuracy; Mudstone lateral continuity accuracy
Site Appraisal – Seismic Interpretation

Top Cavern Interval – No Faults Identified

Base Cavern Interval – No Faults Identified
Site Appraisal – Drill Rig & HR Wireline Logs

Drill Rig:

Low cost modified Civil Engineering Rig:
- Lengthened legs
- Oil & gas safety standards

HR Wireline Logs:

Mining Industry Wireline Tools:
- Depth sampling interval is 2 cm.
- Typical oilfield sampling interval is either 10 or 20 cm in metric units.
Site Appraisal – Gateway Insoluble Content

Correlation: Cores - Gamma Density Log

Estimated Insoluble Content: 8.6%

Cavern Development Interval
(560 Metres to 805 Metres)
Site Appraisal – Gateway Lithologies

Clean Salt Section: medium to very large salt crystals (>40mm); very thin mudstone stringers

“Dirty” Salt Section: Bedded salt rock with zones of cm scale mudstones

Mudstone Rich Section: mudstone beds interspersed with very large salt crystals (>40mm). Salt-dominated layers with very thin mudstone stringers

Anticipate high vertical solution mining efficiency
Site Appraisal – Solution Mining

Solution Mining Goals:

• Largest cavern volume within strict safety limits

• Shortest possible leaching duration

• Minimum number of interventions
Site Appraisal – Solution Mining

Dual Well Configuration: Platform wireline perforations avoids need for costly drill rig. Allows high solution mining flow rates to reduce cavern construction time.

Rock Mechanical Envelope: Allowable Diameter: 120m Effective Diameter: 100m (70%vol of the RME)

Normal Industry Practice – now being tested by BGS
Cavern Volumes and Leaching Durations (years)

The most favourable ratio of cavern volume, leaching duration, intervention effort and maintenance flexibility was reached with the dual well configuration simulations.
Salt Cavern Gas Storage contributes towards resolving the Energy Trilemma:

- Decarbonisation
- Affordability
- Security of Supply

To achieve these goals it is important to “encourage innovation” in:

- Storage services to an SNG market
- Site Selection
- Site Appraisal