

Introduction to Meteorites – KS3 Lesson

Learning Objectives	Curriculum Links
A meteorite is a rock from space that landed on the Earth. It is different from a meteor (which is the light phenomenon that happens when a rock enters the atmosphere, also known as a 'shooting star') or an asteroid (a small rocky body in space, which most meteorites come from). Meteorites can come from all over the Solar System! Some meteorites come from asteroids, but some also come from the Moon and Mars.	Physics – Space physics Pupils should be taught about gravity force, weight = mass x gravitational field strength (g), on Earth g=10 N/kg, different on other planets and stars; gravity forces between Earth and Moon, and between Earth and Sun (qualitative only)
Describing meteorites uses the same principles as describing rocks – they can be described based on their colours, textures, whether they contain grains or crystals, and the size of the grains or crystals present.	Science - Working scientifically Pupils should be taught to: • use appropriate techniques, apparatus, and materials during fieldwork and laboratory work, paying attention to health and safety • make and record observations and measurements using a range of methods for different investigations; and evaluate the reliability of methods and suggest possible improvements Geography - Rocks, weathering and soils
To recognise a meteorite, there are a few features we can look for: a meteorite is often unusually heavy, with a pitted outside appearance, and covered in a dark glassy crust.	Science – Working scientifically Pupils should be taught to make and record observations and measurements using a range of methods for different investigations; and evaluate the reliability of methods and suggest possible improvements Geography – Rocks, weathering and soils
There are 3 main types of meteorites, based on what they are made of: stony, iron, and stony-iron meteorites	Chemistry – Earth and atmosphere Pupils should be taught about: • the structure of the Earth • the rock cycle and the formation of igneous, sedimentary and metamorphic rocks Geography – Rocks, weathering and soils
Instead of waiting for a meteorite to fall on Earth to study it, we can study space rocks by sending a rocket to an asteroid to pick up some samples and bring them back. These are called sample return missions.	Physics – Space physics Pupils should be taught about gravity force, weight = mass x gravitational field strength (g), on Earth g=10 N/kg, different on other planets and stars; gravity forces between Earth and Moon, and between Earth and Sun (qualitative only)

Materials needed:

- Meteorite samples, to pass around: pallasite (sample 11), lunar (sample 12), Martian (sample 13)
- Meteorite samples, for activity: iron meteorite (samples 9, 10), chondrites (samples 15, 16)
- Terrestrial samples: anorthosite (sample 17), basalt (sample 18), haematite (sample 20)
- Hand lenses
- Worksheets

Lesson length: 45 minutes (50 minutes with optional module)

Lesson Plan

Type/ Slide	Geology	Teaching/Learning activity	Time
Core / 1, 2	Meteorite = a rock from space that landed on the	Ask students if they know what a rock from	5 mins
	Earth.	space is called?	
	Meteor = the light phenomenon that happens		
	when a rock enters the Earth's atmosphere. Also	Discuss different terminology.	
	known as a 'shooting star'.		
	Asteroid = a small rocky body orbiting the Sun.	Ask students what force attracts meteorites to	
	Meteoroid = loose rock fragments (usually,	the Earth?	
	fragments of asteroids) that haven't entered the	(Answer: gravity!)	
	Earth's atmosphere, and which are not in a fixed		
	orbit.	While this is happening, pass around the samples	
		below:	
Core / 3	We have meteorites from the Moon and Mars,	Pass around the meteorites in boxes (lunar,	5 mins
	which were separated from their homes due to	Martian, pallasites) for the students to look at.	
	large collisions and made their way to the Earth.	Remind them not to open the boxes!	
	They are both too small and/or fragile to be		
	handled outside of their boxes.		
	Pallasites are made of metal (the shiny, metallic,		
	opaque part) and olivines (yellow-green,		
	transparent, glass-like).		

Core / 4, 5, 6	When a planet forms, it is usually all molten and squishy at the start. When it's molten, the heavy things go to the centre because of gravity , and the light things go to the surface. In time, this creates a layered body, with a crust, a mantle and a core. Just like planets, some asteroids are layered too. Different layers have different compositions, so meteorites from different layers are called different things.	Explain how meteorites form in the context of planetary differentiation. Play PowerPoint animation.	5 mins
	At the surface of an asteroid, we find stony meteorites. They are mostly made of stone, like rocks on Earth. Some of these come from the surface of the Moon and Mars! In the middle of a rocky body, we find iron meteorites , which are	Introduce types of meteorites and how they formed.	
	almost entirely metallic. We can never reach the Earth's core, so looking at iron meteorites is the closest we will get!	Think about the rock cycle – if stony and iron meteorites formed when molten material crystallised, what types of rocks are they? (Answer: igneous, if nothing happened to them	
	Stony-iron meteorites are approximately 50-50 stone and metal. They form when the surface and the middle get mixed up because asteroids collide with each other a lot! The pallasite that they saw earlier is an example of a stony-iron meteorite.	after they cooled down)	
Core / 7	Rocks can be described based on their physical characteristics, including: - Colour(s)	Activity 1: Describing rock and mineral samples Ask students to visit each of the 6 rock stations	15 mins
	 Does it contain grains or crystals? Does it contain metal? Does the inside look different from the 	and make observations about the rocks. They can start at any station, so they should spread out!	
	outside? How?Does it feel unusually heavy, unusually light, or just right?	Ask students to write down their observations in the worksheets.	
	- Any other features? Don't forget to look closely using hand lenses or magnifying glasses!	Circulate the room and give pointers.	
	Differentiation suggestion : if you need to run the activity with fewer samples, we recommend including the rocks on station 2 (iron meteorite), 3 (basalt) and 5 (stony meteorite) as shown on the accompanying PowerPoint.		

Core / 8	In this activity, the students will learn how to	Activity 2: Meteorite detectives (work out	5 mins
20.27	distinguish meteorites from Earth rocks (meteor-	meteorites from meteor-wrongs)	33
	wrongs).	meteorites nom meteor mongs,	
	Williams,	Using their observations from before, they can	
	They should answer these questions:	now have a go at finding the meteorites using	
	I. Is it unusually heavy?	some questions that we provide.	
	Does it have a dark outside crust?	Some questions that we provide.	
	3. Does the outside have an irregular shape,	If they need to quickly go back to the rocks they	
	with fingerprint-sized pits? (note for later:	can, but they should hopefully already have the	
	these are called regmaglypts)	right observations and will just need to tick the	
	4. Can you see metal?	boxes!	
	Outside Crust: some samples are broken and you	This could be combined with the previous	
	should be able to see a lighter colour inside, if	activity.	
	the outside looks 'burnt' then it has a dark outside		
	crust.		
	Irregular shape: a regular shape would mean the		
	rock is round, showing evidence of earth process		
	by being transported via water, wind or ice.		
	Meteorites burn up so will melt and break as they		
	fall to earth, giving them a jagged shape.		
	Not all answers have to be 'yes' for a rock to be a		
	meteorite, but the more 'yes's, the more confident		
	we can be that we found a meteorite!		
Core / 9-16		Give answers	10 mins
		For each clide, as through each question and	
		For each slide, go through each question and reveal if it's a meteorite.	
		reveal II it's a meleome.	
		(When you get to the iron meteorite) Ask	
		students how do we know that iron meteorites	
		come from the middle of an asteroid?	
		They may remember that iron meteorites are very	
		heavy, so it's just because iron is relatively heavy,	
		and it sunk to the centre.	
		They may remember that iron meteorites are very heavy, so it's just because iron is relatively heavy,	

Optional /	Instead of waiting for space rocks to fall on Earth,	Ask students if they can think of another way to	5 mins
17	we can instead go and collect them ourselves.	get our hands on space rocks?	
	There are several recent sample return missions	Introduce asteroid sample return missions.	
	that space agencies have done, to asteroids		
	Itokawa, Ryugu and Bennu. We also have returned		
	Moon samples from the Apollo missions.		
	Pros:		
	- When a meteorite lands on Earth, it's	Ask students what are the pros and cons of	
	extremely hard to find out which asteroid it	going to an asteroid and bringing back	
	came from originally. If we collect samples	samples?	
	from asteroids and they have the same		
	composition, we can be very sure that a		
	meteorite came from that asteroid!		
	- Meteorites burn as they fall through the		
	Earth's atmosphere, which can change their		
	composition. That's not a concern with		
	samples that have come from asteroids.		
	Cons:		
	- Sample return missions are very expensive!		
	- The missions are also high risk, so they can		
	fail, costing a lot of time and money.		
	- In the unlikely event of finding microbial life		
	on an extraterrestrial body, we have to be		
	very careful not to introduce the microbes to		
	the Earth because no living creature is		

immune to them, so they could potentially be

dangerous.