

Chemistry of degradation											
0, 1, 2	Protein as C46H77O17N12S forms aqueous acid C4H8O2 and acetic acid C2H4O2 anaerobically	22	Acetic acid forms methane								
	$C_{46}H_{77}O_{17}N_{12}S + 20.36H_2O = 7.39C_4H_8O_2 + 5.15C_2H_4O_2 + 6.14CO_2 + 12NH_3 + H_2S$		$C_2H_4O_2 = CH_4 + CO_2$								
3, 4, 5	Fat represented as C ₅₅ H ₁₀₄ O ₆ forms aqueous and acetic acid a naero bically	23	Reduction of iron using acetic acid (TUB)								
	C 55H 104O6 + 15.54H 2O + 6.56CO2 = 10.56C4H8O2 + 6.72C2H4O2 + 5.88CH4		$C_2H_4O_2 + 8Fe^{3+} + 2H_2O = 2CO_2 + 8Fe^{2+} + 8H^+$								
6, 7, 8	Carbohydrate high order forms aqueous acid an aerobically	24	Formation of glucose from biomass (TUB)								
	$C_{12}H_{24}O_{12} = 2C_4H_8O_2 + CH_4 + 3CO_2 + 2H_2O_2$		$6C_5H_7NO_2 + 18H_2O + 6H^+ = 5C_6H_{12}O_6 + 6NH_4^+$								
9, 10, 11	Glucose - Carbohydrate forms acetic acid anaerobically	25, 26, 27	Formation of biomass using protein C48H77O17N12S								
	$C_8H_{12}O_8 = 2C_2H_4O_2 + CH_4 + CO_2$		$5C_{46}H_{77}O_{17}N_{12}S - 14NH_4^+ = 46C_5H_7NO_2 + 61H^+ - 27H_2O + SO_4^{-2}$								
12, 13, 14	Degradation of solid waste as C ₆ H ₉ O _{3.56} N _{0.22} a erobically	28, 29, 30	Formation of biomass using fat represented as C ₅₅ H ₁₀₄ O ₆								
	$C_6H_9O_{356}N_{0.32} + 6.23O_2 = 6CO_2 + 4.02H_2O + 0.32NH_3$		5C ₅₅ H ₁₀₄ O ₆ + 55NH ₄ ⁺ = 55C ₅ H ₇ NO ₂ + 515H ⁺ - 80H ₂ O								
15	Degradation of glucose aerobically (TUB)	31, 32, 33	Formation of biomass using carbohydrate high order								
	$C_{e}H_{e2}O_{e} + 6O_{2} = 6CO_{2} + 6H_{2}O_{2}$		5C ₁₂ H ₂₄ O ₄₂ + 12NH ₄ ⁺ = 12C ₅ H ₇ NO ₂ + 12H ⁺ + 36H ₂ O								
16	Desulfurication using glucose (TUB)	34, 35, 36	Formation of biomass using glucose (TUB)								
	$C_{e}H_{e2}O_{e} + SO_{e}^{2} + 2H^{*} = 2C_{2}H_{e}O_{2} + 2CO_{2} + H_{2}S + 2H_{2}O$		C ₂ H ₁₂ O ₂ + 1.2NH ₄ ⁺ = 1.2C ₂ H ₂ NO ₂ + 1.2H ⁺ + 3.6H ₂ O								
17	Denitrification by nitrosomonas bacteria		Formation of biomass using CeHaOaseNaga								
	NH4+ 1.502 = NO2+ 2H+ H2O		$5C_{g}H_{9}O_{3.56}N_{0.32} + 4.4NH_{4}^{+} = 6C_{g}H_{7}NO_{2} + 9H^{+} + 5.8H_{2}O$								
18	Denitrification by nitrobactor bacteria	40	Formation of biomass following denitrification by nitrosomonas bacteria								
	$NO_{2} + 0.5O_{2} = NO_{2}$		5C ₆ H ₁₂ O ₆ + 6NH ₄ ⁺ = 6C ₆ H ₇ NO ₂ + 18H ₂ O + 6H ⁺								
19	Denitrification using glucose (TUB)	41	Formation of biomass following denitrification by nitrobactor bacteria								
	C _a H ₁₂ O _a + 1.6NO ₃ + 1.6 H ⁺ = 2C ₃ H ₄ O ₅ + 2CO ₅ + 0.8N ₅ + 2.8H ₂ O		5C_H,_2O_+ 6NO_+ +18H_+ 6H^+ = 6C_H,NO_+ 30H_2O								
20	Aqueous acid CH ₂ (CH ₂) ₂ COOH. C ₂ H ₂ O ₂ forms actetic acid anaerobically	42	Formation of biomass using a queous acid as CH ₂ (CH ₂) ₂ COOH C ₂ (H ₂ O ₂								
	$4C_{4}H_{2}O_{2} + 4H_{2}O = 4C_{2}H_{4}O_{2} + 6CH_{4} + 2CO_{2}$		5C4H2O2 + 4NH4* = 4C2H3NO2 + 24H* + 2H2O								
21	Desulfurication using acetic acid (TUB)	43	Formation of biomass using a cetic acid (TUB)								
	$C_2H_4O_2 + 2SO_4^{2*} + 4H^+ + 4H_2 = 2H_2S + 2CO_2 + 6H_2O$		$C_2H_4O_2 + 0.4NH_4^+ = 0.4C_5H_7NO_2 + 1.2H_2O + 0.4H^+$								
	Pathways represented in LDAT										
School of Civil Engineering & the Environment											

LDAT compounds z												
							_					
	0, 1, 2	Protein	C46H77O17N12S	23	Hydrogen ion	H⁺						
	3, 4, 5	Fat	C55H104O6	24	Hydroxide ion	OH.						
	6, 7, 8	Carbohydrate	C12H24O12	25	Hydrogen gas	H ₂						
	9, 10, 11	Glucose	C ₆ H ₁₂ O ₆	26	Water	H ₂ O						
	12, 13, 14	Solid Aerobic	C ₆ H ₉ O _{3.56} N _{0.32}	27	Hydrogen Sulphide	H₂S						
	15	Ammonium ion	NH_4^+	28	Nitrogen	N ₂						
	16	Nitrite ion	NO ₂	29	Ammonium gas	NH₃						
	17	Aqueous acid	C ₄ H ₈ O ₂	30	Nitrate ion	NO ₃						
	18	Acetic acid	$C_2H_4O_2$	31	Oxygen gas	O ₂						
	19	Carbon Dioxide	CO ₂	32	Sulphate	SO42-						
	20	Methane	CH ₄	33 - 51	Biomass	C ₅ H ₇ NO ₂						
	21	Iron A	Fe ²⁺	52	Inert							
	22	Iron B	Fe ³⁺									
Compounds represented in LDAT												
School of Civil Engineering & the Environment												

