

Introduction

• The use of hydrogen peroxide

Introduction

- The use of hydrogen peroxide
- Outline of site procedures

An experimental use of hydrogen peroxide in water well rehabilitation

Introduction

- The use of hydrogen peroxide
- Outline of site procedures
- Example of treatment to restore yield

Introduction

- The use of hydrogen peroxide
- Outline of site procedures
- Example of treatment to restore yield
- Example of treatment to destroy PAH

An experimental use of hydrogen peroxide in water well rehabilitation

Collaborators

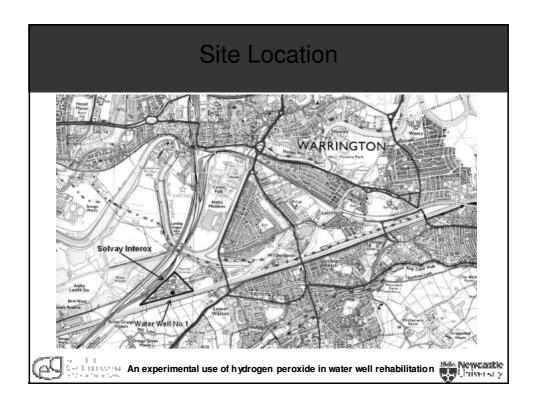
Solvay Interox Ltd, Warrington

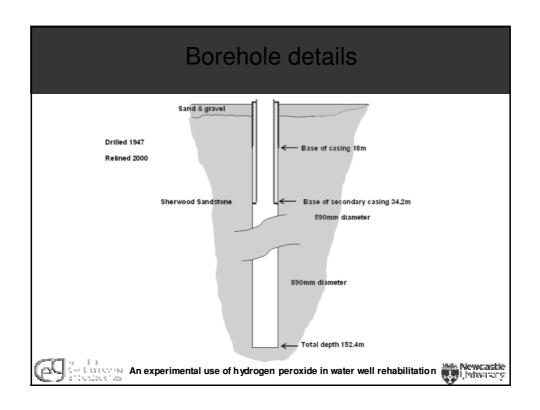
Collaborators

Solvay Interox Ltd, Warrington

J.P. Whitter (Water Well Engineers) Ltd

An experimental use of hydrogen peroxide in water well rehabilitation




Yield restoration

Example of yield restoration

Solvay Interox, Warrington

• September 2000 – borehole relined & cleaned

An experimental use of hydrogen peroxide in water well rehabilitation

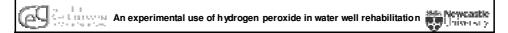
- September 2000 borehole relined & cleaned
- November 2003 headworks modified

- September 2000 borehole relined & cleaned
- November 2003 headworks modified
- May 2006 pump failed

An experimental use of hydrogen peroxide in water well rehabilitation

- September 2000 borehole relined & cleaned
- November 2003 headworks modified
- May 2006 pump failed
- December 2006 cctv survey

- September 2000 borehole relined & cleaned
- November 2003 headworks modified
- May 2006 pump failed
- December 2006 cctv survey
- June 2007 borehole treated


An experimental use of hydrogen peroxide in water well rehabilitation

- September 2000 borehole relined & cleaned
- November 2003 headworks modified
- May 2006 pump failed
- December 2006 cctv survey
- June 2007 borehole treated
- July 2007 cctv survey repeated

- September 2000 borehole relined & cleaned
- November 2003 headworks modified
- May 2006 pump failed
- December 2006 cctv survey
- June 2007 borehole treated
- July 2007 cctv survey repeated
- July 2007 borehole restored to service

- September 2000 borehole relined & cleaned
- November 2003 headworks modified
- May 2006 pump failed
- December 2006 cctv survey
- June 2007 borehole treated
- July 2007 cctv survey repeated
- July 2007 borehole restored to service
- November 2007 step test undertaken

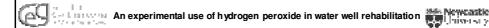
• 5 m³ of 35% hydrogen peroxide injected

An experimental use of hydrogen peroxide in water well rehabilitation

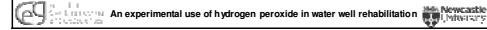
- 5 m³ of 35% hydrogen peroxide injected
- Injection at 10 levels from 70m depth upwards

- 5 m³ of 35% hydrogen peroxide injected
- Injection at 10 levels from 70m depth upwards
- Borehole rested for 24 hours before cctv survey

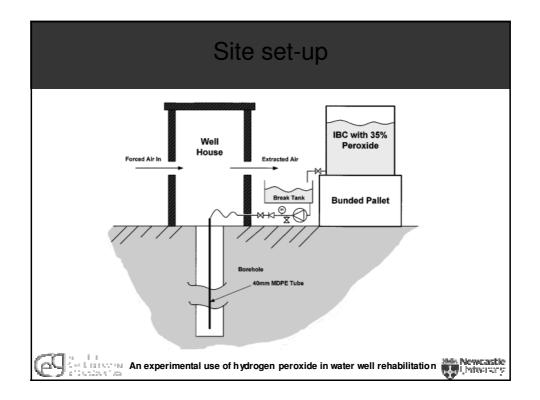
An experimental use of hydrogen peroxide in water well rehabilitation

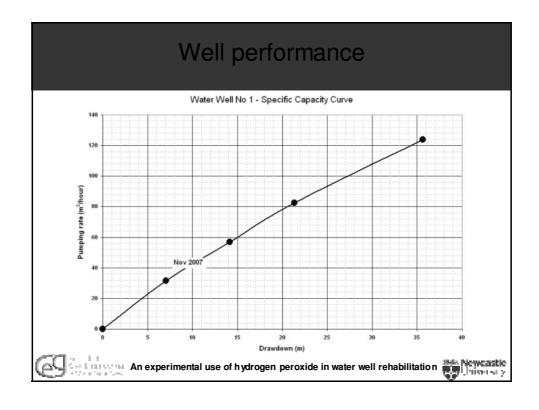


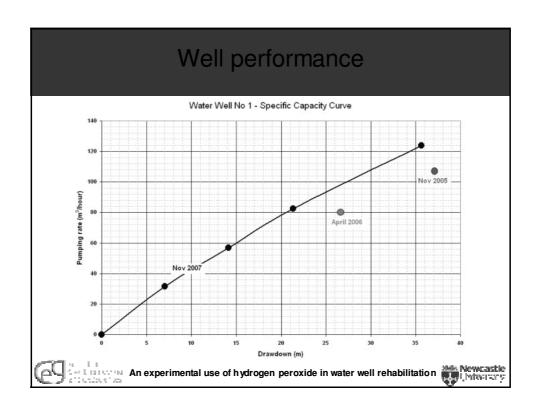
- 5 m³ of 35% hydrogen peroxide injected
- Injection at 10 levels from 70m depth upwards
- Borehole rested for 24 hours before cctv survey
- Submersible pump reinstalled

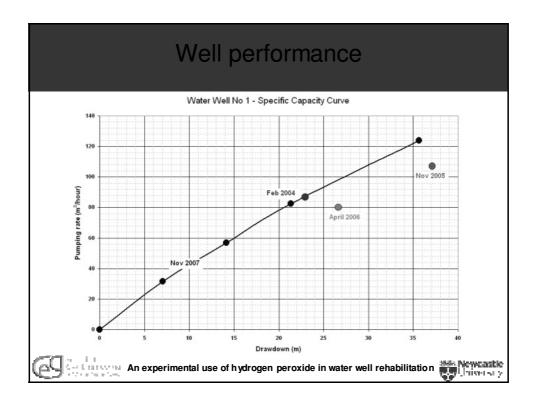


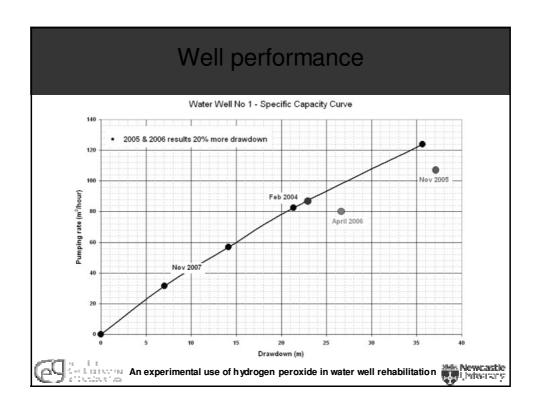

- 5 m³ of 35% hydrogen peroxide injected
- Injection at 10 levels from 70m depth upwards
- Borehole rested for 24 hours before cctv survey
- Submersible pump reinstalled
- Borehole pumped to waste

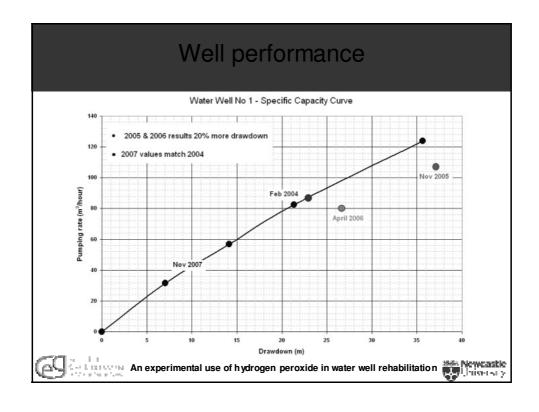


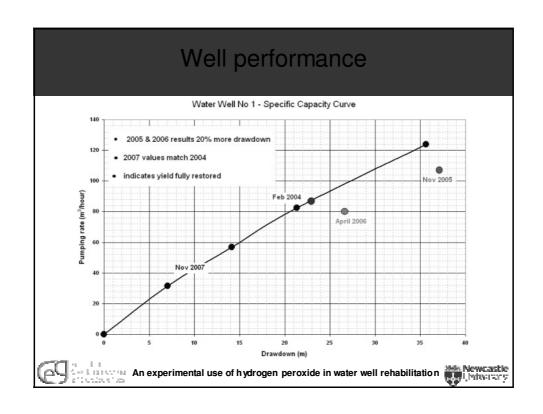

- 5 m³ of 35% hydrogen peroxide injected
- Injection at 10 levels from 70m depth upwards
- Borehole rested for 24 hours before cctv survey
- Submersible pump reinstalled
- Borehole pumped to waste
- Presence of peroxide using standard indicator paper

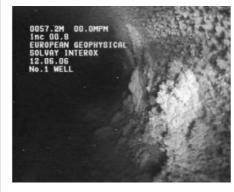


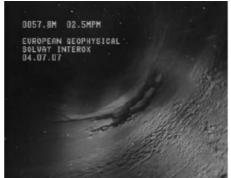

- 5 m³ of 35% hydrogen peroxide injected
- Injection at 10 levels from 70m depth upwards
- Borehole rested for 24 hours before cctv survey
- Submersible pump reinstalled
- Borehole pumped to waste
- Presence of peroxide using standard indicator paper
- Borehole returned to service



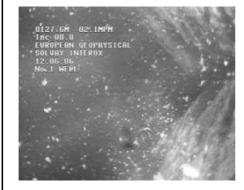


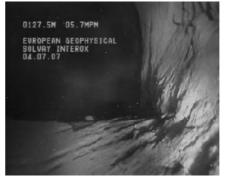






CCTV


Removal of bacterial growths for well face

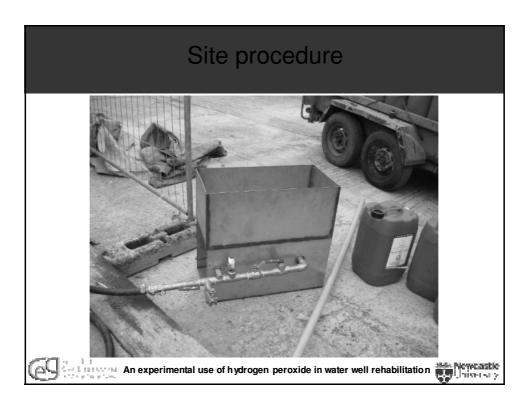


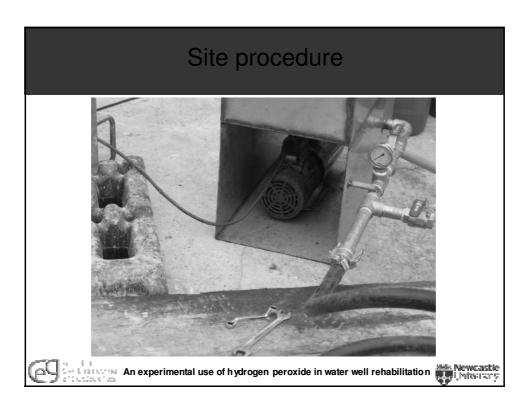
An experimental use of hydrogen peroxide in water well rehabilitation

CCTV

Water clear after treatment

An experimental use of hydrogen peroxide in water well rehabilitation wetcher




Site procedure


Site procedure

Site procedure An experimental use of hydrogen peroxide in water well rehabilitation in the procedure in the proc

• Spontaneous decomposition

An experimental use of hydrogen peroxide in water well rehabilitation

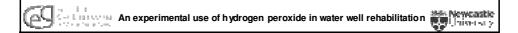
- Spontaneous decomposition
- Decomposition rate depends on temperature

- Spontaneous decomposition
- Decomposition rate depends on temperature
- Decomposition rate depends concentration

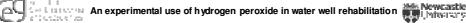
An experimental use of hydrogen peroxide in water well rehabilitation

- Spontaneous decomposition
- Decomposition rate depends on temperature
- Decomposition rate depends concentration
- Decomposition rate depends presence of catalysts

- Spontaneous decomposition
- Decomposition rate depends on temperature
- Decomposition rate depends concentration
- Decomposition rate depends presence of catalysts
- $\bullet \ 2H_2O_2 \rightarrow 2H_2O + O_2$



An experimental use of hydrogen peroxide in water well rehabilitation



- Spontaneous decomposition
- Decomposition rate depends on temperature
- Decomposition rate depends concentration
- Decomposition rate depends presence of catalysts
- $\bullet \ 2H_2O_2 \rightarrow 2H_2O + O_2$
- Large quantities of oxygen produced

- Spontaneous decomposition
- Decomposition rate depends on temperature
- Decomposition rate depends concentration
- Decomposition rate depends presence of catalysts
- $\bullet \ 2H_2O_2 \rightarrow 2H_2O + O_2$
- Large quantities of oxygen produced
- Only other breakdown product is water

- Spontaneous decomposition
- Decomposition rate depends on temperature
- Decomposition rate depends concentration
- Decomposition rate depends presence of catalysts
- $\bullet \ 2H_2O_2 \rightarrow 2H_2O + O_2$
- Large quantities of oxygen produced
- Only other breakdown product is water
- Exothermic reaction produces heat

Fenton's Reagent

• Ferrous iron acts as catalyst

An experimental use of hydrogen peroxide in water well rehabilitation

Fenton's Reagent

- Ferrous iron acts as catalyst
- Reaction is very vigorous

Fenton's Reagent

- Ferrous iron acts as catalyst
- Reaction is very vigorous
- Produces free hydroxyl radicals

An experimental use of hydrogen peroxide in water well rehabilitation

Fenton's Reagent

- Ferrous iron acts as catalyst
- Reaction is very vigorous
- Produces free hydroxyl radicals
- Increases oxidation and biocide properties

Fenton's Reagent

- Ferrous iron acts as catalyst
- Reaction is very vigorous
- Produces free hydroxyl radicals
- Increases oxidation and biocide properties
- $\bullet \ \ \text{Fe}^{2\text{+}} + \text{H}_2\text{O}_2 \rightarrow \text{Fe}^{3\text{+}} + \text{OH} + \text{OH}^-$

An experimental use of hydrogen peroxide in water well rehabilitation

Fenton's Reagent

- Ferrous iron acts as catalyst
- Reaction is very vigorous
- Produces free hydroxyl radicals
- Increases oxidation and biocide properties
- $\bullet \ \ \text{Fe}^{\, \text{2+}} + \text{H}_2\text{O}_2 \rightarrow \text{Fe}^{3+} + \text{OH} + \text{OH}^-$
- $\bullet \ \ \text{Fe}^{3\text{+}} + \text{H}_2\text{O}_2 \rightarrow \text{Fe}^{2\text{+}} + \text{OOH} + \text{H}^{\text{+}}$

Example of contaminant removal

Line was An experimental use of hydrogen peroxide in water well rehabilitation

PAH contamination

• Location confidential

The Language An experimental use of hydrogen peroxide in water well rehabilitation whereastle

- Location confidential
- Borehole 92.3m deep & 300mm diameter

An experimental use of hydrogen peroxide in water well rehabilitation

PAH contamination

- Location confidential
- Borehole 92.3m deep & 300mm diameter
- PAH contamination from carbon black

- Location confidential
- Borehole 92.3m deep & 300mm diameter
- PAH contamination from carbon black
- Treated with hydrogen peroxide on two occasions

An experimental use of hydrogen peroxide in water well rehabilitation

PAH contamination

- Location confidential
- Borehole 92.3m deep & 300mm diameter
- PAH contamination from carbon black
- Treated with hydrogen peroxide on two occasions
- First treatment 1,500 litres used

- Location confidential
- Borehole 92.3m deep & 300mm diameter
- PAH contamination from carbon black
- Treated with hydrogen peroxide on two occasions
- First treatment 1,500 litres used
- Second treatment 720 litres used + ferrous sulphate

An experimental use of hydrogen peroxide in water well rehabilitation

Original PAH contamination

Depth		15m	22m	58m	63m	68m	75m	81m	82m
Sample type		Р	Р	D	Р	D	D	D	Р
Fluoranthene	ng/l	<0.3	1,020	3,370	2,650	4,730	5,090	2,220	3,450
Benzo 1,12, perylene	ng/l	1.6	106	356	294	520	526	253	374
Benzo 11,12, fluoranthene	ng/l	0.7	94.8	360	283	492	527	230	376
Inendo (1, 2, 3-cd) pyrene	ng/l	<0.1	97.1	281	253	401	391	218	310
Benzo-3, 4- fluorathene	ng/l	1.5	286	1,050	817	1,430	1,520	670	1,070
Benzo-3, 4-p yr ene	ng/l	1.0	207	773	618	1,060	1,130	502	801

An experimental use of hydrogen peroxide in water well rehabilitation Mewcastle

After first treatment

Samp	Sample depth		60m	72m	76m
Fluoranthene	ng/l	12.4	<2.4	3.4	4.7
Benzo 1,12, perylene	ng/l	<1.3	<1.3	<1.3	<1.3
Benzo 11, 12, fluoranthene	ng/l	<0.6	<0.6	<0.6	<0.6
Inendo (1, 2, 3-cd) pyrene	ng/l	1.9	1.9	2.2	1.6
Benzo-3, 4-fluorathene	ng/l	1.3	1.1	0.9	<0.7
Benzo-3, 4-p yr ene	ng/l	0.5	<0.4	0.5	<0.4

An experimental use of hydrogen peroxide in water well rehabilitation

After second treatment

Date	26/1/2008	27/1/2008	28/1/2008	25/3/2008	
Duration of pumping	90 mins	24 hours	36 hours	53 days	
Fluoranthene	ng/l	34.7	<2.4	5.9	<2.4
Benzo 1,12, perylene ng/l		10.7	<1.3	<1.3	<1.3
Benzo 11, 12, fluoranthene ng/l		4.6	<0.6	<0.6	<0.6
Inendo (1, 2, 3-cd) pyrene	ng/l	7.9	<0.7	<0.7	0.7
Benzo-3, 4-fluorathene	ng/l	6.4	<0.7	<0.7	<0.7
Benzo-3, 4-p yr ene	ng/l	8.0	<0.4	<0.4	<0.4

After second treatment

Date		7/5/2008	20/5/2008	21/5/2008	22/5/2008	23/5/2008
Fluoranthene	ng/l	<2.4	<2.4	<2.4	<2.4	<2.4
Benzo 1,12, per ylene	ng/l	<1.3	<1.3	<1.3	<1.3	<1.3
Benzo 11, 12, fluoranthene	ng/l	<0.6	<0.6	<0.6	<0.6	<0.6
Inendo (1, 2, 3-cd) pyrene	ng/l	<0.7	<0.7	<0.7	<0.7	<0.7
Benzo-3, 4-fluorathene	ng/l	<0.7	<0.7	<0.7	<0.7	<0.7
Benzo-3, 4-p yr ene	ng/l	<0.4	<0.4	<0.4	<0.4	<0.4

Line was An experimental use of hydrogen peroxide in water well rehabilitation

Summary

• Appears to restore borehole yield

Summary

- Appears to restore borehole yield
- Oxide deposits removed from borehole face

An experimental use of hydrogen peroxide in water well rehabilitation

Summary

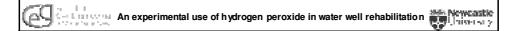
- Appears to restore borehole yield
- Oxide deposits removed from borehole face
- Likely to be scrubbing affect of oxygen bubbles

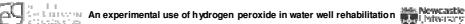
Summary

- Appears to restore borehole yield
- Oxide deposits removed from borehole face
- Likely to be scrubbing affect of oxygen bubbles
- Fenton's Reagent produces free hydroxyl radicals

An experimental use of hydrogen peroxide in water well rehabilitation

Summary


- Appears to restore borehole yield
- Oxide deposits removed from borehole face
- Likely to be scrubbing affect of oxygen bubbles
- Fenton's Reagent produces free hydroxyl radicals
- Acts as strong biocide


Summary

- Appears to restore borehole yield
- Oxide deposits removed from borehole face
- Likely to be scrubbing affect of oxygen bubbles
- Fenton's Reagent produces free hydroxyl radicals
- Acts as strong biocide
- Residual materials are oxygen and water

Summary

- Appears to restore borehole yield
- Oxide deposits removed from borehole face
- Likely to be scrubbing affect of oxygen bubbles
- Fenton's Reagent produces free hydroxyl radicals
- Acts as strong biocide
- Residual materials are oxygen and water
- Further trials are currently underway

