

Landfill hydrogeology: impacts and challenges

William Powrie

School of Civil Engineering and the Environment, University of Southampton

Outline

- A brief history of landfill
- Importance of managing water: why hydrogeology matters, both within and at the boundaries of the landfill
- Inside the landfill: dependence of hydraulic conductivity on density or vertical stress
- · Anisotropy due to waste structure and daily cover
- Effect of gassing
- Preferential flow
- Flushing out contaminants
- Challenges for the future

Sustainable development

School of Civil Engineering and the Environment

• "meets the needs of the present without compromising the ability of future generations to meet their own needs"

Our Common Future, 1987

CATEGO	RY ASSAY9	6										
Size	Wt %	Paper	Plastic	Dense	Tex-	MC	MNC	Glass	Fe	nFe	Putres	<10
mm		Card	film	Plastic	tiles							mm
160+	39.0	62.7	4.0	7.1	10.5	14.0	-	0.8	0.7	-	-	-
160-80	26.4	35.4	6.8	7.5	4.4	18.5	1.3	7.0	7.7	2.1	9.3	-
80-40	15.2	30.2	6.3	8.4	1.3	5.3	5.0	9.2	5.4	3.2	25.8	-
40-20	10.0	1.8	0.7	3.4	0.8	4.2	10.9	21.6	1.1	1.2	44.2	-
20-10	4.5	6.0	0.2	1.5	-	5.6	5.6	27.8	-	0.5	52.9	-
<10	4.9	-	-	-	-	-	-	-	-	-	-	10
Total	100.0	39.8	4.4	6.4	5.5	11.8	2.4	7.0	13.2	3.2	1.2	4.
				Water	content (W	c) of refu	se = 31%					

Analysis	School of Civil Engineering and the Environment
The changes in vertical total stress δσ,, pore wa vertical effective stress δσ', that take pla increment δz are:	ter pressure δu and ce over the depth
$\delta \sigma_{v} = \rho_{sat} g. \delta z \delta u = \rho_{w} g. (\delta z - \delta h) \qquad \delta \sigma'_{v} = \delta \sigma_{v}$	$v_v - \delta u$
From Darcy's Law, $(q/A) = k.i = k.(\delta h/\delta z)$ $\Rightarrow \delta h = (q/A).(1/K).\delta z$	
The saturated density ρ _{sat} and hydraulic cond related to the vertical effective stress (in kPa)	luctivity k may be :

Example of the future

Papers	School of Civil Engineering and the Environment
 Hydraulic properties of household waste and their implicat landfills. W Powrie & R P Beaven. Proceedings of the Instit (Geotechnical Engineering) 137(4) 235-247, October 1999 	tions for fluid flow in tution of Civil Engineers
 The sustainable landfill bioreactor – a flexible approach to W Powrie & J P Robinson. In Sustainable solid waste man region (eds B Nath et al), Kluwer Academic Publishers, 20 	solid waste management. <i>aagement in the Black Sea</i> 00
 Modelling the biochemical degradation of solid waste in la Robinson & Q Ren. Waste Management 24, 227-240, Apr 	ndfills. J K White, J P il 2004
• Modelling the compression behaviour of landfilled domest White, R P Beaven & W Powrie. <i>Waste Management</i> 24 , 2	ic waste. A P Hudson, J K 59-269, April 2004
• Modelling flow to leachate wells in landfills. A A Al-Thani, <i>Waste Management</i> 24 , 271-276, April 2004	R P Beaven & J K White.
 Installation of horizontal wells in landfilled waste using dir P Beaven, W Powrie and D Cole. American Society of Civil Geotechnical and Geoenvironmental Engineering 132 (7). 	rectional drilling. S E Cox, R <i>Engineers Journal of</i> , 869-878, July 2006
 Operation and performance of horizontal wells for leachate W Powrie, S E Cox & R P Beaven. Accepted for publication Civil Engineers Journal of Geotechnical and Geoenvironn 	e control in a waste landfill. in American Society of nental Engineering

