Projecting uncertain impacts of climate change on wetlands: a risk-based tool for England and Wales

James Blake and Mike Acreman Centre for Ecology & Hydrology, Wallingford

Background

- The Wetland Vision
 - restoration and management of wetlands throughout England over the next 50 years
 - little information on climate change
- www.wetlandvision.org.uk

Future potential

Project aim

- Produce a set of tools to assess impacts of climate change
- Assumption hydrology is the key characteristic of a wetland that will be directly impacted

Risk-based tool-kit

Tier 1 tool approach – regional impacts

Tier 1 climate inputs

- UKCP09 climate projections
- 2050s timeslice (2040-2069)
- 'Medium' greenhouse gases and aerosols emissions scenario
- IPCC SRES A1B
- 12 river basin regions for England and Wales
- 10,000 projections per region

Tier 1 wetland modelling

Water supply mechanism end members Groundwater-fed River-fed Rain-fed (SW/GW) (various aquifers) Groundwater levels UKCP09 River flows representative rainfall and typical catchments boreholes (CEH: FFGWL) temperature (BGS: FFGWL)

Tier 1 groundwater-fed wetland modelling

- 15 region-aquifer combinations
- 4 vegetation communities
- 600,000 climate change simulations
- Simple (efficient) wetland models
 - applicable at régional scale
- Hypothetical wetlands
 - calibrated to be sustainable under baseline climate conditions
- Approach follows that developed for rain-fed and river-fed wetlands*

^{*}Acreman et. al. (2009) A simple framework for evaluating regional wetland ecohydrological response to climate change, *Ecohydrology*, 2(1), 1-17

Tier 1 GW-fed modelling approach

- Simple conceptual understanding
 - groundwater discharge and recharge
 - lateral groundwater seepage
 - no precipitation or evaporation
 - no surface runoff
 - no downslope outflow

Tier 1 GW-fed model equation

WL_{WET,t} = WL_{WET,t-1} + k(WL_{GW,t} - WL_{WET,t-1})
 WL water level / hydraulic head (m)
 WET wetland
 GW groundwater
 t timestep
 k 'hydraulic head transfer rate' factor (m/m)

- 'k' (basically a scaling factor) combines
 - wetland, aquifer (and any aquitard) permeabilities
 - relative specific yields and scales of wetland and aquifer
- Wetland surface elevation (mAOD) parameter
- No horizontal dimensions not modelling water volumes
- No lag term wetland scale minor relative to aquifer

Tier 1 GW-fed model baseline calibration

- Monthly groundwater level data (BGS)
- 1980 1990 baseline
- Initial conditions
 - end winter optimum
- 9 month run-in
- Semi-automatic wetland calibration
 - optimise parameters
 - ecohydrological water level requirements
 - deviation consistent between regions

Tier 1 GW-fed model climate change

- We now have 60 calibrated baseline models for each region-aquifer-vegetation community combination...
- ...but we plan to run 10,000 climate change projections for each model...
- ...it isn't practical to store/interpret 600,000 sets of monthly wetland water level data!?

```
1, -0.006, -0.032,
                    0.012, -0.060,
    0.006, -0.016, 0.020, -0.056,
    0.018, -0.003, 0.028, -0.047,
    0.030, 0.008, 0.035, -0.038,
    0.036, 0.007, 0.039, -0.036,
    0.035, -0.001, 0.041, -0.041,
    0.028, -0.012, 0.040, -0.052,
    0.021, -0.026, 0.038, -0.068,
    0.009, -0.040, 0.036, -0.086,
    0.002, -0.049, 0.033, -0.101,
    0.003, -0.043, 0.036, -0.110,
11,
    0.010, -0.036, 0.042, -0.109,
12.
    0.016, -0.035, 0.048, -0.104,
    0.021, -0.036, 0.053, -0.097,
    0.029, -0.010, 0.061, -0.087,
16,
    0.040, 0.006, 0.070, -0.074,
    0.045, 0.012, 0.077, -0.064,
    0.054, 0.016, 0.082, -0.054,
    0.058, 0.010, 0.084, -0.051,
    0.055, 0.001,
                    0.083, -0.057,
    0.046, -0.012,
                    0.080, -0.067,
    0.042, -0.017,
    0.044, -0.019,
24, 0.053, -0.009,
```


Tier 1 climate change impact metrics

- Hydrology
 - water levels
 - water balance
- Plant communities
 - ecohydrological water
 level requirements
- Historic environment
 - soil saturation depths
- Birds
 - flooding in winter and spring

Tier 1 visualising uncertainty

- Impact metric histograms
 - 10,000 projections
 - impact boundaries defined by expert judgement

Basic block plot

Tier 1 wetlands and climate change tool

- Open access
- Rain-fed and river-fed wetland results currently online
- http://www.ceh.ac.uk/sci_programmes/Water/
 Wetlands/ClimateChangeAssessmentToolforWetlands.html
- Google 'CEH wetlands climate change'!
- Revised website and groundwater-fed wetland results online by end March 2013
- A preview of the groundwater-fed Tier 1 tool...

Tier 1 tool limitations

- It provides a generalised regional indication of potential impacts suitable for risk screening and investigating uncertainty
- It is not a detailed prediction for a particular wetland
- Other UKCP09 climate change timeslices and emissions scenarios
- Multiple water sources not considered
 - assess separately then consider results in combination using site understanding
- Water quality/nutrients not explicitly considered
 - use site understanding, e.g. increasing chalk groundwater water balance likely to increase base-richness

- Testing the Tier 1 tool
- Great Cressingham Fen (GCF), Norfolk
 - calcareous valley-fen
 - groundwater-fed by springs and seepages from the Chalk via granular alluvial deposits
 - surface inputs from rainfall and limited rainfall-runoff
- Existing calibrated Tier 3 model (EA/Entec)

- Great Cressingham Fen
 - single 200 x 200 m grid cell
 - 70 x 70 km Ely Ouse regional groundwater model
 - MODFLOW and 4R
- Detailed distributed groundwater modelling by Entec (2011)
 - naturalised GW levels
 - baseline (1961 to 1990)
 - 2050s (2040 to 2069)
 - three RCM representations

- Calculated impact metrics for Tier 3 wetland water levels
- Standardised results to Tier 1 baseline (as Tier 3 RCM is a simulated baseline climate, Tier 1 uses observed climate)
- M13 Schoenus nigricans-Juncus subnodulosus mire

- Some consistency between the Tier 1 and Tier 3 models
- Caveats
 - different baseline climate data
 - Tier 3 GCF grid cell groundwater levels represent several vegetation communities therefore average response
 - natural vs naturalisation

Tier 2 tool

- Simple Tier 1 models
- Groundwater levels for a specific wetland
 - other FFGWL project results
 - generate climate change results from an existing groundwater model
 - develop a new model
 (baseline and climate change)

Future developments

- Modelling wetland water levels and nutrients under climate change
 - linking Tier 1 river-fed wetlands and INCA river models
- Considering model uncertainty as well as climate uncertainty
 - improved calibration objective function
 - parameter equifinality
- Other UKCP09 timeslices and emissions scenarios?

Extensive soil drying

Prolonged waterlogging in growing season

Exhaustion of nutrient supplies

Nutrient enrichment

Thank you

Any questions / discussion welcome

