

Bogs in Ireland

Image: Friends of the Irish Environment

Image:An Foras Taluntais

Supporting Conditions for Irish Raised Bogs

Vital Elements for healthy bog ecohydrology

- 1. Nutrient-poor water supply-Rainfall.
- 2. Water logging water table close to, or at ground surface How?
 - A. Frequent rainfall
 - B. Gentle topographic gradients (<0.5%)
 - C. Low downward seepage rates

Conventional View of Marginal Drainage

Clara Bog: Example from Irish Midlands

22 Quaternary geology of the Clara study area.

Image: From Schouten et al., 2002

Subsidence

Photos: Colm Malone, NPWS.

Image: Regan (2012)

Hydro-ecological effects of Subsidence

High bog topographic catchment areas and 'wet' ecotope distribution in **(A)** 1992 and **(B)** 2009 (Regan & Johnston, *Catchment fragmentation and hydro-ecological modification of a raised bog wetland*, IAHS red book series, 2013; *in press*)

Ecological Effects of Subsidence

Images: Regan (2012)

Simulating drainage-related subsidence

Steady State
1D Confined Aquifer
At t=0, H₂=H₁=60mAD
At t>0, H₂=57mAD
Head drop converted to stress
Uniform deformation
(over full peat thickness)

Model inputs:

Recharge: From flow balance/

Hydrograph separation from EMMA

Transmissivity: From slug testing

Heads: Field measurements

Incorporating Geotechnical Properties

 One dimensional flow for confined aquifer with recharge.

$$\frac{d^2h}{dx^2} = -\frac{q}{T}$$

- Change in head used to calculate strain.
- Strain applied over whole peat column
- Change in thickness calculated and resulting topography simulated.

Simulated Topographic Profiles of Bog Surface

A. Flat Planar Substrate

B. Sloping Substrate

Simulated Profiles 2 – More Complex Substrate

Centre of Bog: Till Windows

Perspectives

- 1D confined flow with recharge for marginal drainage.
- Situation with windows through lac clay more complex radial.
- Effects of lowered water levels resemble pumping
- Same phenomena observed as simplified simulation (Lakes, desiccated areas).
- Peat thickness / compressibility and substrate composition are crucial controls in response to subsidence.

Conclusions

- Raised Bogs can be GWDTEs.
- Drains cutting through the peat substrate can have comparable impacts to groundwater abstraction.
- This causes subsidence in (compressible) peat.
- Subsidence impacts bog ecohydrology by altering flow directions / catchments/ residence time.
- The nature and configuration of peat substrate influences ecotope fate during/after subsidence in marginal areas.
- Impacts decline moving away from margins suggesting other processes responsible for decline in more distal parts of bog.
- Drainage can result in certain areas becoming wetter (, although overall effects lead to drying out).